Pressure—Volume—Temperature Properties for Binary Polymer Solutions of Poly(propylene glycol) with 1-Octanol and Acetophenone

Ho-mu Lin, Tzu-Sheng Hsu, and Ming-Jer Lee*

Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106-07, Taiwan

Received February 5, 2001; Revised Manuscript Received June 18, 2001

ABSTRACT: The pressure–volume–temperature (P-V-T) properties were measured for polymer solutions of poly(propylene glycol) + 1-octanol and poly(propylene glycol) + acetophenone at temperatures from 298 to 348 K and pressures up to 50 MPa. The experimental density data were used to calculate the excess volumes, which show a change from negative to positive as the mole fraction of the polymer component is increased for both systems. The Tait equation accurately represents the pressure effect on the liquid densities over the entire pressure range. A generalized equation with two characteristic parameters correlates well all of the P-V-T data for each binary system. The experimental specific volumes were also correlated satisfactorily with the Flory–Orwoll–Vrij and the Schotte equations of state

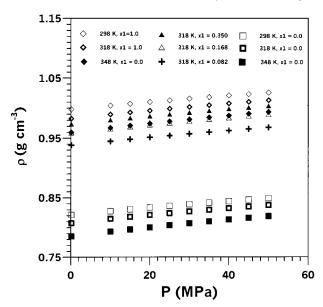
Introduction

Pressure-volume-temperature (P-V-T) data for polymer materials are fundamentally important for polymer processing and the development of polymer equations of state. The data for mixtures and their constituent compounds are often used to determine the equation constants, which are then applied to calculate other thermodynamic properties for the same mixtures at the conditions of interest. Dee et al., 1 for example, reported the characteristic parameters of the Flory-Orwoll-Vrij (FOV) equation of state for various polymer liquids, such as polyethylene, poly(dimethyl siloxane), poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG). These parameters were obtained from P-V-Tdata in a temperature range from room temperature to 523 K and at pressures up to 200 MPa. The specific volumes of aqueous PEGs and of oligomeric propylene glycols were measured by Muller and Rasmussen² and by Sandell and Goring³ at atmospheric pressure. Earlier P-V-T data for polymers have been extensively compiled by Zoller and Walsh4 over wide ranges of temperature and pressure. The data for associated polymer solutions and polymer blends were reported recently for systems such as poly(4-hydroxystyrene) + acetone (Compostizo et al.5), poly(4-hydroxystyrene) + tetrahydrofuran and poly(4-hydroxystyrene) + ethanol (Compostizo et al.⁶), PPG + n-hexane and PPG + ethanol (Colin et al.⁷), and PEG + PPG (Colin et al.⁸). These data were employed to examine lattice-fluid equations of state⁹ for describing hydrogen-bonding effects on the volumetric properties of polymer solutions. Additionally, our research group at NTUST has also made extensive P-V-T measurements for polymeric materials over a temperature range from 298.15 to 338.15 K and at pressures up to 30 MPa. Lee et al.¹⁰ determined the volumetric properties for poly(ethylene glycol methyl ether)-350 (PEGME-350), PEG-200, PEG-600, and the blended mixtures of PEGME-350 with either PEG-200 or PEG-600; Chang et al.¹¹ made similar determinations

for 10 fractionation cuts of PEG and PPG; and Lee et al. 12 did the same for polymer solutions of PEG-200 \pm 1-octanol and PEG-600 \pm 1-octanol. Lee et al. 13 extended the pressures up to 50 MPa for PEGME-350 \pm anisole and PEG-200 \pm anisole. As part of a continuation of these studies, P-V-T properties are reported in this study for binary polymer solutions of PPG-4000 \pm 1-octanol and PPG-4000 \pm 1-octanol and PPG-4000 \pm 1-octanol and PPG-4000, with a strongly polar solvent. The new experimental results complement information on volumetric behavior for the associated polymer solutions in response to the effects of temperature, pressure, and composition.

Experimental Section

1-Octanol (>99 %), acetophenone (99%), and the fractionation cuts of PPG-4000 were purchased from Aldrich Chemical Co. (Milwaukee, WI). The number-average molecular weight $(M_{\rm n})$ and the polydispersity $(M_{\rm w}/M_{\rm n})$ are approximately 4960 and 1.008, respectively, for PPG-4000. These values were measured with a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) technique. Each substance was degassed by heat accompanying with agitation before use. The schematic diagram of the P-V-T apparatus has been illustrated by Lee et al.13 Each liquid mixture sample was prepared from the degassed compounds by mass to an accuracy of ± 0.0001 in mass fraction. The density was measured with a high-pressure densitometer (DMA 512 P, Anton Paar). The pressure in the measuring cell was manipulated by a hand pump and monitored by a pressure transducer (model PDCR 911, 0-70 MPa, Druck) with a digital indicator (model DPI 261, Druck). Pressure measurements were accurate to $\pm 0.1\%$ at pressures higher than atmospheric. A thermostatic bath with circulating water maintained the temperature of the measuring cell to within ± 0.03 K. A precision digital thermometer (model 1506, Hart Scientific) incorporated with a thermistor probe measured the bath temperature to an accuracy of ± 0.02 K. The oscillation period (t_i) of sample *i* in the vibrating U tube was displayed by a densimeter of model DMA 48 (Anton Paar) and was converted into density (ρ_i) via


$*$
 To whom correspondence should be addressed. Fax: 886-2-2737-6644. E-mail: mjl@ch.ntust.edu.tw.

$$\rho_i = A(t_i^2 - B) \tag{1}$$

Table 1. Comparison of Experimental Results with Literature Values for 1-Octanol, Acetophenone, and PPG-4000

			$ ho/\mathbf{g}$ (cm^{-3}	
substance	T/K	P/MPa	this work	literature	data source
1-octanol	298.15	0.1	0.8216	0.8211	Rauf and Stewart ¹⁷
				0.8212	Sastry and Valand ¹⁸
				0.8212	Lee et al. ¹²
				0.8218	Garg et al. ¹⁹
				0.8218	Wagner and Heintz ²⁰
				0.8223	TRČ Tables ²¹
				0.8226	Diaz Pena and Tardajos ²²
1-octanol	348.15	0.1	0.7855	0.7854	Garg et al. ¹⁹
		10.0	0.7933	0.7931	Garg et al. ¹⁹
acetophenone	298.15	0.1	1.0224	1.0225	Aminabhavi et al. ²³
•	348.15	0.1	0.9792	0.9806	Steele et al. ²⁴
PPG-4000	298.15	0.1	0.9979	0.9984	Chang et al. ¹¹
		20.0	1.0100	1.0106	Chang et al. ¹¹
		30.0	1.0156	1.0160	Chang et al. ¹¹
	318.15	0.1	0.9828	0.9833	Chang et al. ¹¹
				0.9818^{a}	Zoller and Walsh ⁴
		20.0	0.9959	0.9967	Chang et al. ¹¹
				0.9938^{a}	Zoller and Walsh ⁴
		40.0	1.0076	1.0049^{a}	Zoller and Walsh ⁴

 $^{^{}a}$ Measured at 318.35 K with an accuracy of ± 0.002 cm 3 g $^{-1}$ for specific volume.

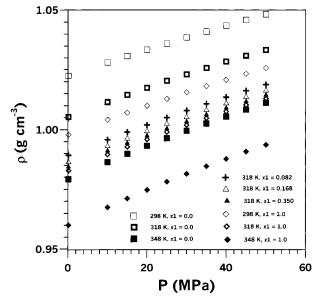


Figure 1. Variation of density with pressure for PPG-4000 (1) + 1-octanol (2).

where A and B are apparatus parameters determined by using the literature $P\!-\!V\!-\!T$ data for two calibration fluids, namely, pure water and dry nitrogen. The calibration was made at each temperature of interest over a pressure range of $0.1\!-\!50$ MPa. The calibration reproduced water densities with an average absolute deviation of 0.01% over the entire range of calibrated conditions. The viscosity differences between the samples and the calibration fluids might affect the accuracy of density measurements by an oscillating densitometer (Ashcroft et al. 16), but the effect is generally minor. The accuracy of the density measurements, without correction for the viscosity effect, is estimated to be within $\pm 0.1\%$.

Results and Discussion

Table 1 compares the experimental results with literature values for the constituent compounds. The agreement is within the uncertainty of the measurements. The results of the P-V-T measurements are listed in Tables 2 and 3 for PPG + 1-octanol and PPG + acetophenone, respectively. Figures 1 and 2 show that the densities of a mixture at a given composition

Figure 2. Variation of density with pressure for PPG-4000 (1) + acetophenone (2).

increase approximately linearly with increasing pressure over the investigated conditions. The effect of pressure on the isothermal density of a system with a given composition can be represented accurately by the Tait equation

$$\frac{\rho - \rho_0}{\rho} = C \ln \left(\frac{D + P}{D + 0.1} \right) \tag{2}$$

where ρ_0 is the density at 0.1 MPa. The optimized values of C and D were obtained by fitting the Tait equation to the density data with the following objective function (π)

$$\pi = \left[\sum_{k=1}^{n} |\rho_{k,\text{calc}} - \rho_{k,\text{expt}}|/\rho_{k,\text{expt}}\right]/n \tag{3}$$

where n is the number of data points. $\rho_{k,\text{calc}}$ and $\rho_{k,\text{expt}}$ refer to the calculated and the experimental densities for the kth point, respectively. Tables 4 and 5 report the calculated results, including the values of ρ_0 , C, D,

Table 2. Experimental Results for PPG-4000 (1) + 1-Octanol (2)

Table 3. Exper	rimental 1	Results	for	PPG-4000	(1)	+
	Aceton	henone	(2)			

		1	-Octanol	(2)					A
		ρ/g cm ⁻³			ρ/g cm ⁻³				ρ/g cm ⁻
P/MPa	298.15 K	318.15 K	348.15 K	298.15 K	318.15 K	348.15 K	P/MPa	298.15 K	318.15
	W_1	$= 0.0 (x_1 =$	0.0)	$w_1 = 0.$	$7734^a (x_1 =$	0.082)b		W_1	$= 0.0 (x_1)$
0.1	0.8216	0.8077	0.7855	0.9534	0.9381	0.9149	0.1	1.0224	1.0053
10	0.8278	0.8149	0.7933	0.9596	0.9448	0.9226	10	1.0281	1.0115
15	0.8308	0.8182	0.7969	0.9626	0.9481	0.9263	15	1.0308	1.0145
20	0.8337	0.8213	0.8005	0.9654	0.9513	0.9298	20	1.0335	1.0175
25	0.8364	0.8243	0.8039	0.9682	0.9543	0.9332	25	1.0361	1.0204
30	0.8391	0.8272	0.8072	0.9709	0.9572	0.9365	30	1.0387	1.0231
35	0.8417	0.8300	0.8104	0.9736	0.9601	0.9397	35	1.0411	1.0258
40	0.8442	0.8327	0.8135	0.9762	0.9628	0.9428	40	1.0436	1.0284
45	0.8467	0.8354	0.8164	0.9787	0.9655	0.9458	45	1.0460	1.0310
50	0.8491	0.8380	0.8193	0.9812	0.9681	0.9486	50	1.0483	1.0334
0.1		$0.8848 (x_1 =$			$0.9294 (x_1 =$		0.1		$0.8927 (x_1$
0.1	0.9745	0.9593	0.9362	0.9830	0.9680	0.9451	0.1	1.0026	0.9867
10	0.9807	0.9659	0.9439	0.9893	0.9748	0.9529	10	1.0086	0.9934
15 20	0.9837	0.9692	0.9476	0.9923	0.9780	0.9566	15 20	1.0116	0.9966 0.9997
25	0.9865	0.9724	0.9513	0.9952	0.9812	0.9601	25	1.0145	
30	$0.9893 \\ 0.9921$	$0.9755 \\ 0.9785$	$0.9548 \\ 0.9580$	$0.9980 \\ 1.0007$	$0.9842 \\ 0.9871$	$0.9636 \\ 0.9668$	30	1.0172 1.0199	1.0027
35	0.9947	0.9813	0.9612	1.0034	0.9900	0.9700	35	1.0133	1.0036
40	0.9973	0.9841	0.9644	1.0060	0.9928	0.9731	40	1.0250	1.0113
45	0.9998	0.9869	0.9673	1.0085	0.9955	0.9761	45	1.0236	1.0110
50	1.0023	0.9895	0.9703	1.0110	0.9982	0.9790	50	1.0301	1.0146
50		$0.9534 (x_1 =$			$0.9685 (x_1 =$		30		$0.9569(x_1)$
0.1	0.9876	0.9724	0.9496	0.9906	0.9755	0.9527	0.1	1.0000	0.9844
10	0.9938	0.9792	0.9572	0.9968	0.9824	0.9605	10	1.0060	0.9911
15	0.9969	0.9823	0.9609	0.9998	0.9857	0.9642	15	1.0089	0.9944
20	0.9998	0.9856	0.9645	1.0027	0.9888	0.9677	20	1.0119	0.9975
25	1.0025	0.9885	0.9679	1.0055	0.9919	0.9711	25	1.0146	1.0003
30	1.0053	0.9914	0.9711	1.0082	0.9948	0.9744	30	1.0173	1.0034
35	1.0080	0.9943	0.9743	1.0108	0.9977	0.9776	35	1.0199	1.0063
40	1.0105	0.9973	0.9775	1.0135	1.0004	0.9807	40	1.0226	1.0090
45	1.0131	0.9998	0.9804	1.0160	1.0032	0.9837	45	1.0250	1.0118
50	1.0155	1.0025	0.9833	1.0184	1.0058	0.9865	50	1.0275	1.0144
	$w_1 = 0$	$0.9788 (x_1 =$	0.547)		$0.9862 (x_1 =$	0.653)			$0.9804 (x_1)$
0.1	0.9928	0.9776	0.9547	0.9945	0.9792	0.9563	0.1	0.9987	0.9832
10	0.9990	0.9844	0.9624	1.0006	0.9861	0.9640	10	1.0049	0.9900
15	1.0021	0.9877	0.9661	1.0036	0.9895	0.9677	15	1.0080	0.9933
20	1.0050	0.9909	0.9697	1.0065	0.9925	0.9712	20	1.0109	0.9964
25	1.0077	0.9940	0.9731	1.0093	0.9955	0.9746	25	1.0137	0.9994
30	1.0104	0.9969	0.9764	1.0121	0.9985	0.9779	30	1.0164	1.0024
35	1.0132	0.9998	0.9795	1.0147	1.0014	0.9811	35	1.0190	1.0053
40	1.0158	1.0024	0.9826	1.0173	1.0042	0.9842	40	1.0216	1.0080
45	1.0183	1.0053	0.9856	1.0198	1.0069	0.9872	45	1.0242	1.0107
50	1.0208	1.0080	0.9886	1.0223	1.0095	0.9901	50	1.0267	1.0134
0.1	-	$0.9919 (x_1 = 0.9805)$	0.763)	$w_1 = 0$ 0.9967	$0.9964 (x_1 = 0.9815)$		0.1	$w_1 = 0$ 0.9980	$0.9925 (x_1) \\ 0.9828$
0.1 10	0.9958 1.0021	0.9803	0.9653	1.0029	0.9882	0.9587 0.9663	0.1 10	1.0043	0.9895
15	1.0021	0.9906	0.9689	1.0029	0.9862	0.9700	15	1.0043	0.9928
20	1.0030	0.9936	0.9724	1.0038	0.9947	0.9735	20	1.0101	0.9959
25	1.0107	0.9967	0.9758	1.0116	0.9978	0.9770	25	1.0101	0.9989
30	1.0134	0.9996	0.9791	1.0110	1.0007	0.9802	30	1.0123	1.0019
35	1.0161	1.0025	0.9824	1.0149	1.0036	0.9834	35	1.0182	1.0047
40	1.0187	1.0053	0.9854	1.0195	1.0064	0.9865	40	1.0209	1.0075
45	1.0213	1.0080	0.9885	1.0220	1.0001	0.9896	45	1.0234	1.0102
50	1.0237	1.0107	0.9914	1.0245	1.0117	0.9925	50	1.0258	1.0129
		$= 1.0 (x_1 =$							_
0.1	0.9979	0.9828	0.9600				-	= mass	
10	1.0042	0.9896	0.9675				compo	nent 1; c	alculate
15	1.0071	0.9928	0.9712				120.15	1 for PPG	-4000 a
20	1.0100	0.9959	0.9747						
25	1.0128	0.9990	0.9781				again	st (V ₀ /V)	_ 1 T
30	1.0156	1.0019	0.9814						
35	1.0182	1.0048	0.9846					ing em _ļ	
40	1.0208	1.0076	0.9877				parar	neters, δ	\mathfrak{d}_1 and \mathfrak{d}
4 ~	4 0000	4 0 4 0 0	0.000						

 a w_{1} = mass fraction of component 1. b x_{1} = mole fraction of component 1; calculated with molecular weights of 4960 and 130.231 for PPG-4000 and 1-octanol, respectively.

0.9907

0.9936

45

1.0233

1.0103

1.0130

and π for PPG + 1-octanol and PPG + acetophenone, respectively. With these tabulated ρ_0 , C, and \bar{D} values, the Tait equation reproduces the densities at pressures higher than 0.1 MPa to within the experimental uncer-

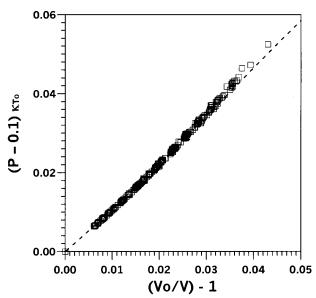
Figures 3 and 4 show that all of the P-V-T data are merged onto a single curve, when $(P-0.1)\kappa_{T0}$ is plotted

		Acc	topheno	110 (2)		
		$ ho/{ m g~cm^{-3}}$			$ ho/{ m g~cm^{-3}}$	
P/MPa	298.15 K	318.15 K	348.15 K	298.15 K	318.15 K	348.15 K
	W_1	$= 0.0 (x_1 =$	0.0)	$w_1 = 0.6$	$7872^a (x_1 =$	$0.082)^{b}$
0.1	1.0224	1.0053	0.9792	1.0052	0.9892	0.9651
10	1.0281	1.0115	0.9864	1.0110	0.9958	0.9725
15	1.0308	1.0145	0.9898	1.0140	0.9990	0.9760
20	1.0335	1.0175	0.9932	1.0168	1.0020	0.9795
25	1.0361	1.0204	0.9964	1.0197	1.0051	0.9828
30 35	1.0387 1.0411	1.0231 1.0258	0.9995 1.0026	1.0223 1.0249	1.0079 1.0107	0.9862 0.9893
40	1.0411	1.0238	1.0026	1.0249	1.0107	0.9923
45	1.0460	1.0204	1.0033	1.0300	1.0162	0.9952
50	1.0483	1.0334	1.0112	1.0323	1.0188	0.9982
00		$.8927 (x_1 =$			$.9345 (x_1 =$	
0.1	1.0026	0.9867	0.9632	1.0011	0.9853	0.9620
10	1.0086	0.9934	0.9708	1.0073	0.9920	0.9696
15	1.0116	0.9966	0.9745	1.0103	0.9951	0.9732
20	1.0145	0.9997	0.9779	1.0132	0.9983	0.9768
25	1.0172	1.0027	0.9813	1.0160	1.0013	0.9802
30	1.0199	1.0056	0.9846	1.0187	1.0042	0.9834
35	1.0225	1.0085	0.9878	1.0214	1.0071	0.9866
40	1.0250	1.0113	0.9908	1.0240	1.0099	0.9896
45	1.0276	1.0140	0.9938	1.0266	1.0126	0.9927
50	1.0301	1.0166	0.9967	1.0290	1.0152	0.9955
0.1		$.9569 (x_1 =$			$.9708 (x_1 =$	
0.1	1.0000	0.9844	0.9610	0.9994	0.9839	0.9606
10 15	1.0060 1.0089	0.9911 0.9944	$0.9685 \\ 0.9724$	1.0054 1.0084	0.9904 0.9937	$0.9681 \\ 0.9718$
20	1.0089	0.9975	0.9758	1.0034	0.9968	0.9753
25	1.0116	1.0005	0.9792	1.0112	0.9998	0.9788
30	1.0173	1.0034	0.9825	1.0168	1.0028	0.9820
35	1.0199	1.0063	0.9857	1.0194	1.0056	0.9852
40	1.0226	1.0090	0.9887	1.0220	1.0084	0.9883
45	1.0250	1.0118	0.9918	1.0246	1.0111	0.9913
50	1.0275	1.0144	0.9947	1.0270	1.0137	0.9942
	$w_1 = 0$	$.9804 (x_1 =$	0.547)	$w_1 = 0$	$.9873 (x_1 =$	0.653)
0.1	0.9987	0.9832	0.9602	0.9983	0.9828	0.9599
10	1.0049	0.9900	0.9676	1.0045	0.9897	0.9675
15	1.0080	0.9933	0.9713	1.0075	0.9929	0.9712
20	1.0109	0.9964	0.9749	1.0103	0.9961	0.9748
25	1.0137	0.9994	0.9783	1.0131	0.9991	0.9782
30	1.0164	1.0024	0.9815	1.0158	1.0021	0.9815
35	1.0190	1.0053	0.9847	1.0185	1.0050	0.9847
40	1.0216	1.0080	0.9878	1.0212	1.0078	0.9878
45 50	1.0242 1.0267	1.0107 1.0134	$0.9908 \\ 0.9937$	1.0237 1.0261	1.0105 1.0132	0.9908 0.9937
30		$.9925 (x_1 =$			$.9967 (x_1 =$	
0.1	0.9980	0.9828	0.703)	0.9979	0.9827	0.9598
10	1.0043	0.9895	0.9674	1.0042	0.9895	0.9674
15	1.0071	0.9928	0.9711	1.0071	0.9927	0.9711
20	1.0101	0.9959	0.9747	1.0100	0.9959	0.9746
25	1.0129	0.9989	0.9780	1.0128	0.9989	0.9780
30	1.0156	1.0019	0.9814	1.0156	1.0018	0.9813
50		1.0047	0.9846	1.0182	1.0047	0.9845
35	1.0182	1.0047	0.0010			
	1.0182	1.0047	0.9877	1.0208	1.0075	0.9876
35					1.0075 1.0102 1.0129	

n of component 1. $^{b}x_{1}$ = mole fraction of ed with molecular weights of 4960 and and acetophenone, respectively.

The relation can be expressed by the equation with two characteristic

$$\kappa_{\text{To}}(P - 0.1) = \delta_1 \left(\frac{V_0}{V} - 1\right)^{\delta_2}$$
(4)

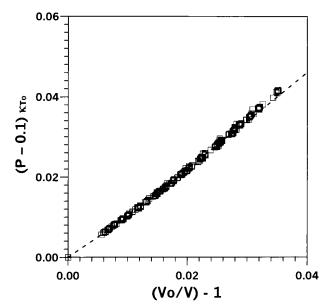

where κ_{T_0} and V_0 are the isothermal compressibility and the specific volume at 0.1 MPa, respectively. The isothermal compressibility κ_T at any pressure is calculated from its definition with the aid of the Tait equation

$$\kappa_{\rm T} = \frac{-1}{V} \left(\frac{\partial V}{\partial P} \right)_{T,x} = \frac{V_0}{V} \left(\frac{C}{D+P} \right) \tag{5}$$

Table 4. Density at 0.1 MPa (ρ_0) and Correlated Results of the Tait Equation for PPG-4000 (1) + 1-Octanol (2)

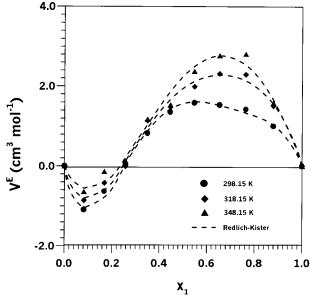
tne	Tait Equ	lation i	or PPG-40	00 (1) + 1	-Octanoi	(Z)
<i>T</i> /K	W_1^a	X_1^b	$ ho_{ m o}/{ m g~cm^{-3}}$	С	D/MPa	$10^5 \pi^a$
298.15	0.0	0.0	0.8216	0.08441	106.70	3.3
	0.7734	0.082	0.9534	0.08308	123.00	1.6
	0.8848	0.168	0.9745	0.08078	121.70	1.4
	0.9294	0.257	0.9830	0.07960	120.10	1.3
	0.9534	0.350	0.9876	0.07726	116.50	1.9
	0.9685	0.446	0.9906	0.07939	121.50	1.2
	0.9788	0.547	0.9928	0.07737	117.40	2.6
	0.9862	0.653	0.9945	0.08437	130.80	1.1
	0.9919	0.763	0.9958	0.07915	121.50	2.4
	0.9964	0.879	0.9969	0.08015	125.17	5.7
	1.0	1.0	0.9979	0.07820	120.30	2.0
318.15	0.0	0.0	0.8077	0.07419	79.68	6.2
	0.7734	0.082	0.9381	0.08188	108.00	1.3
	0.8848	0.168	0.9593	0.09542	131.80	5.4
	0.9294	0.257	0.9680	0.08178	111.30	1.8
	0.9534	0.350	0.9724	0.08356	115.60	6.9
	0.9685	0.446	0.9755	0.07480	100.40	3.3
	0.9788	0.547	0.9776	0.08167	111.50	3.4
	0.9862	0.653	0.9792	0.07359	99.17	5.0
	0.9919	0.763	0.9805	0.08107	112.00	1.5
	0.9964	0.879	0.9817	0.08559	120.17	5.4
	1.0	1.0	0.9828	0.08390	116.90	1.8
348.15	0.0	0.0	0.7855	0.08988	85.48	2.8
	0.7734	0.082	0.9149	0.08625	97.54	2.2
	0.8848	0.168	0.9362	0.08741	100.60	5.5
	0.9294	0.257	0.9451	0.08051	92.93	2.2
	0.9534	0.350	0.9496	0.08246	96.47	1.8
	0.9685	0.446	0.9527	0.08050	93.78	1.6
	0.9788	0.547	0.9547	0.08149	95.48	1.7
	0.9862	0.653	0.9563	0.08041	94.46	1.3
	0.9919	0.763	0.9576	0.08865	106.30	2.0
	0.9964	0.879	0.9589	0.09545	116.89	3.7
	1.0	1.0	0.9600	0.09113	110.70	2.9

 a w_1 = mass fraction of component 1. b x_1 = mole fraction of component 1; calculated with molecular weights of 4960 and 130.231 for PPG-4000 and 1-octanol, respectively. c π defined as in eq 3.


Figure 3. Generalized correlation of the P-V-T data for PPG-4000 (1) + 1-octanol (2) at different compositions.

where V is the specific volume and the constants C and D are taken from Tables 4 and 5. The characteristic parameters δ_1 and δ_2 are 1.4000 and 1.0577 for PPG + 1-octanol and 1.4215 and 1.0651 for PPG + acetophenone, respectively. The dashed lines in Figures 3 and 4 are the correlated results. This empirical equation, eq 4, correlates the density ρ to absolute average deviations

Table 5. Density at 0.1 MPa (ρ_0) and Correlated Results of the Tait Equation for PPG-4000 (1) + Acetophenone (2)


the 12	iit Equa	11011 101	11 0-4000	(I) ACE	topheno	ile (2)
T/K	W_1^a	X_1^b	$ ho_{ m o}/{ m g~cm^{-3}}$	C	D/MPa	$10^5 \pi^c$
298.15	0.0	0.0	1.0224	0.09612	169.40	5.4
	0.7872	0.082	1.0052	0.08945	145.30	3.9
	0.8927	0.168	1.0026	0.09486	153.40	6.3
	0.9345	0.257	1.0011	0.08806	137.20	5.8
	0.9569	0.350	1.0000	0.10230	166.10	7.3
	0.9708	0.446	0.9994	0.10020	161.00	5.4
	0.9804	0.547	0.9987	0.09416	148.10	8.1
	0.9873	0.653	0.9983	0.08956	140.60	4.1
	0.9925	0.763	0.9980	0.09059	141.80	8.4
	0.9967	0.879	0.9979	0.08870	138.20	6.2
	1.0	1.0	0.9979	0.07820	120.30	2.0
318.15	0.0	0.0	1.0053	0.08784	137.00	2.8
	0.7872	0.082	0.9892	0.09292	135.30	4.7
	0.8927	0.168	0.9867	0.08972	128.20	4.1
	0.9345	0.257	0.9853	0.09138	130.30	6.6
	0.9569	0.350	0.9844	0.08783	124.30	3.7
	0.9708	0.446	0.9839	0.09951	144.30	6.3
	0.9804	0.547	0.9832	0.09026	127.30	7.9
	0.9873	0.653	0.9828	0.07300	98.65	3.7
	0.9925	0.763	0.9828	0.08480	118.50	2.6
	0.9967	0.879	0.9827	0.08468	118.10	2.4
	1.0	1.0	0.9828	0.08390	116.90	1.8
348.15	0.0	0.0	0.9792	0.08757	114.40	3.1
	0.7872	0.082	0.9651	0.09407	117.90	4.4
	0.8927	0.168	0.9632	0.08517	103.00	2.7
	0.9345	0.257	0.9620	0.08794	106.50	5.2
	0.9569	0.350	0.9610	0.08714	104.90	6.2
	0.9708	0.446	0.9606	0.08671	104.30	3.5
	0.9804	0.547	0.9602	0.08498	102.10	5.6
	0.9873	0.653	0.9599	0.08841	106.00	3.0
	0.9925	0.763	0.9598	0.08868	106.50	3.3
	0.9967	0.879	0.9598	0.08510	101.70	2.7
	1.0	1.0	0.9600	0.09113	110.70	2.9

 a $w_1=$ mass fraction of component 1. b $x_1=$ mole fraction of component 1; calculated with molecular weights of 4960 and 120.151 for PPG-4000 and acetophenone, respectively. c π defined as in eq 3.

Figure 4. Generalized correlation of the P-V-T data for PPG-4000 (1) + acetophenone (2) at different compositions.

(AADs) of 0.028 and 0.021% overall, with maximum deviations (at 50 MPa) of 0.23 and 0.15% for PPG + 1-octanol and PPG + acetophenone, respectively. As a consequence, the characteristic parameters δ_1 and δ_2 can be determined from a few experimental data points (in principle, two points will be sufficient) for any given composition. Once the parameters are determined, eq

Figure 5. Variations of excess volume with composition for PPG-4000 (1) + 1-octanol (2) at 0.1 MPa.

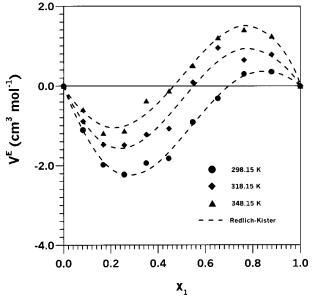


Figure 6. Variations of excess volume with composition for PPG-4000 (1) + acetophenone (2) at 0.1 MPa.

4 can be used to estimate the density at elevated pressures from the density at atmospheric pressure (or other reference pressure), κ_{To} , and V_{o} .

The volume change of mixing or excess volume (V^{E}) is related to the molecular interactions in a mixture. The excess volume can be calculated from experimental density data using

$$V^{\rm E} = V_{\rm m} - x_1 V_1^{\rm o} - x_2 V_2^{\rm o}$$
 (6)

with

$$V_{\rm m} = \frac{x_1 M_1 + x_2 M_2}{\rho} \tag{7}$$

where $V_{\rm m}$ is the molar volume of the mixture. x_i , $V_i^{\rm o}$, and M_i are the mole fraction, molar volume, and molecular weight, respectively, for component i. The uncertainty of the calculated excess volumes was esti-

Table 6. Correlated Results of the Redlich-Kister Equation for PPG-4000 (1) + 1-Octanol (2) and PPG-4000 (1) + Acetophenone (2)

Name		<i>P</i> /	·		phenone (2		AAD ^a /
298.15			A_0	A_1	A_2	A_3	cm ³ mol
198.15			PPG-	4000 (1) -	+ 1-Octanol	(2)	
10	298.15	0.1					0.045
15	200.10						
20 6.0588 5.7770 -9.6676 10.2031 0.104 25 6.7231 5.8344 -10.8850 9.6119 0.083 30 6.3384 5.7437 -10.3363 9.8248 0.054 40 5.8045 5.0119 -9.3538 10.9908 0.086 45 6.0799 4.6494 -9.9308 10.7897 0.102 50 5.7342 3.8896 -9.3710 12.2057 0.096 10 6.9592 7.1805 -4.6298 10.2133 0.138 15 6.4474 4.8023 -4.9910 12.2048 0.223 20 7.1388 8.6131 -7.9739 3.6591 0.204 25 7.1604 8.5759 -9.6205 1.7431 0.273 30 7.3332 8.0564 -9.6984 2.1313 0.273 35 7.1322 8.1066 -9.2762 1.7837 0.283 40 6.9264 8.6979 -9.5849 0.3360 0.166 45 7.0436 7.9839 -10.6238 -0.3627 0.304 40 6.9264 8.6979 -9.5849 0.3360 0.166 45 7.0436 7.9839 -10.6238 -0.3627 0.304 40 6.9264 8.6979 -9.5849 0.3360 0.166 45 6.7239 13.1302 -11.9512 -10.1965 0.301 20 6.8951 13.2420 -10.6309 -8.6708 0.252 25 6.8048 13.8992 -10.6107 -9.9818 0.252 25 6.8048 13.8992 -10.6107 -9.9818 0.252 30 6.3832 11.9259 -9.8003 -7.0925 0.228 35 6.7604 12.2482 -10.3661 -8.1585 0.216 40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 30 -4.0205 13.5252 -1.2510 -5.1123 0.146 45 7.4060 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 40 -4.2841 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -0.0590 11.1894 -3.3378 -5.9603 0.180 30 -0.0590 11.1894 -3.3378 -5.9603 0.183 30 -0.0590 11.1894 -3.3378 -5.9603 0.183 30 -0.0590 11.1894 -3.3378 -5.9603 0.185 35 -0.0169 13.4640 -1.1171 -7.8116 0.162							
30 6.3384 5.7437 -10.3363 9.8248 0.054 35 5.6555 4.5679 -9.1849 11.5125 0.091 40 5.8045 5.0119 -9.3538 10.9908 0.086 45 6.0799 4.6494 -9.9308 10.7897 0.102 50 5.7342 3.8896 -9.3710 12.2057 0.096 318.15 0.1 8.3187 10.2297 -9.8086 4.6550 0.112 10 6.9592 7.1805 -4.6298 10.2133 0.138 15 6.4474 4.8023 -4.9910 12.2048 0.223 20 7.1388 8.6131 -7.9739 3.6591 0.204 25 7.1604 8.5759 -9.6205 1.7431 0.279 30 7.3332 8.0564 -9.6984 2.1313 0.273 35 7.1322 8.1066 -9.2762 1.7837 0.283 40 6.9264 8.6979 -9.5849 0.3360 0.166 45 7.0436 7.9839 -10.6238 -0.3627 0.304 50 6.7838 8.6655 -8.7059 0.1975 0.244 45 7.0436 7.9839 -10.6238 -0.3627 0.304 50 6.8938 12.7893 -6.7413 0.9755 0.148 10 6.6093 11.6780 -10.0255 -6.1114 0.255 15 6.7239 13.1302 -11.9512 -10.1965 0.301 20 6.8951 13.2420 -10.6309 -8.6708 0.252 25 6.8048 13.8992 -10.6107 -9.9818 0.256 30 6.3832 11.9259 -9.8003 -7.0925 0.228 35 6.7604 12.2482 -10.3661 -8.1585 0.216 40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 31 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -1.1711 10.8766 -0.2812 1.6545 0.055 50 -1.3091 9.9634 -0.6933 1.4498 0.089 318.15 0.1 1.2415 14.0111 0.3138 -2.2677 0.076 45 -1.1711 10.8766 -0.7417 0.2854 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 318.15 0.1 1.2415 14.0111 0.3138 -2.2777 0.076 45 -1.1711 10.8766 -0.7417 -0.8584 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 3148.15 0.1 1.5415 14.0111 0.3138 -2.2777 0.107 60 0.0768 12.6333 -1.3236 -6.6557 0.191 40 0.2860 11.4748 -1.6439 -5.2146 0.185 50 0.0619 13.4440							
35 5.6555 4.5579 -9.1849 11.5125 0.091 40 5.8045 5.0119 -9.3538 10.9908 0.086 45 6.0799 4.6494 -9.9308 10.7897 0.102 50 5.7342 3.8896 -9.3710 12.2057 0.096 10 6.9592 7.1805 -4.6298 10.2133 0.138 15 6.4474 4.8023 -4.9910 12.2048 0.223 20 7.1388 8.6131 -7.9739 3.6591 0.204 25 7.1604 8.5759 -9.6205 1.7431 0.279 30 7.3332 8.0564 -9.6984 2.1313 0.273 35 7.1322 8.1066 -9.2762 1.7837 0.283 40 6.9264 8.6679 -9.5849 0.3360 0.166 45 7.0436 7.9839 -10.6238 -0.3627 0.304 45 6.70436 7.9839 -10.6238 -0.3627 0.304 45 6.038 8.6655 -8.7059 0.1975 0.244 348.15 0.1 8.9758 12.7893 -6.7413 0.9755 0.148 10 6.6093 11.6780 -10.0255 -6.1114 0.255 15 6.7239 13.1302 -11.9512 -10.1965 0.301 20 6.8951 13.2420 -10.6309 -8.6708 0.252 25 6.8048 13.8992 -10.6107 -9.9818 0.252 25 6.8048 13.8992 -10.6107 -9.9818 0.252 30 6.3832 11.9259 -9.8003 -7.0925 0.228 35 6.7604 12.2482 -10.3661 -8.1585 0.216 40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2025 13.5525 -1.2510 -5.1123 0.146 50 -4.0205 13.5525 -1.2510 -5.1123 0.146 51 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.159 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 51 -1.7306 11.7005 -0.0662 -0.1591 0.037 20 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 50 -1.3091 9.9634 -0.6933 1.4498 0.089 51 -1.1711 10.8766 -0.7417 0.2854 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 51 -1.1711 10.8766 -0.7417 0.2854 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 52 -1.2964 11.0737 -0.7310 0.2722 0.045 50 -0.019 13.4640 -1.1717 -7.8116 0.162 50 -0.0590 11.1894 -3.3788 -5.9603 0.180 53 -0.1094 11.5441 -1.2147 -8.6178 0.150		25	6.7231	5.8344	-10.8850	9.6119	0.083
40		30	6.3384	5.7437	-10.3363	9.8248	0.054
45					-9.1849	11.5125	
50							
18.15							
10	010.15						
15	318.15						
20 7.1388 8.6131 -7.9739 3.6591 0.204 25 7.1604 8.5759 -9.6205 1.7431 0.279 30 7.3332 8.0564 -9.6984 2.1313 0.273 35 7.1322 8.1066 -9.2762 1.7837 0.283 40 6.9264 8.6979 -9.5849 0.3360 0.166 45 7.0436 7.9839 -10.6238 -0.3627 0.304 50 6.7838 8.6655 -8.7059 0.1975 0.244 348.15 0.1 8.9758 12.7893 -6.7413 0.9755 0.148 10 6.6093 11.6780 -10.0255 -6.1114 0.255 15 6.7239 13.1302 -11.9512 -10.1965 0.301 20 6.8951 13.2420 -10.6309 -8.6708 0.252 25 6.8048 13.8992 -10.6107 -9.9818 0.256 30 6.3832 11.9259 -9.8003 -7.0925 0.228 35 6.7604 12.2482 -10.3661 -8.1585 0.216 40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 10 -1.4282 12.0225 -0.9408 -0.3229 0.045 50 -1.3091 9.9634 -0.6933 1.4498 0.095 40 -1.3326 10.8508 -2.2631 -1.6345 0.076 45 -1.1711 10.8766 -0.7417 0.2854 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 348.15 0.1 1.2415 14.0111 0.3138 -2.2777 0.107 10 0.4234 12.4298 -2.5851 -5.0262 0.206 15 -0.1129 14.4181 -1.2147 -8.6178 0.150 20 0.0768 12.6533 -1.33788 -5.9603 0.180 35 -0.1964 11.5541 -2.7780 -7.2810 0.179 40 0.2860 11.4748 -1.6439 -5.2146 0.163 40 0.2860 11.1748 -3.3788 -5.9603 0.180 35 -0.1961 11.52808 -1.1535 -7.3463 0.198							
25							
30 7.3332 8.0564 -9.6984 2.1313 0.273 35 7.1322 8.1066 -9.2762 1.7837 0.283 40 6.9264 8.6979 -9.5849 0.3360 0.166 45 7.0436 7.9839 -10.6238 -0.3627 0.304 50 6.7838 8.6655 -8.7059 0.1975 0.244 348.15 0.1 8.9758 12.7893 -6.7413 0.9755 0.148 10 6.6093 11.6780 -10.0255 -6.1114 0.255 15 6.7239 13.1302 -11.9512 -10.1965 0.301 20 6.8951 13.2420 -10.6309 -8.6708 0.252 25 6.8048 13.8992 -10.6107 -9.9818 0.256 30 6.3832 11.9259 -9.8003 -7.0925 0.228 35 6.7604 12.2482 -10.3661 -8.1585 0.216 40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 10 -1.4282 12.0225 -0.9408 -0.3229 0.045 15 -1.7306 11.7005 -0.0662 -0.1591 0.037 20 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.3921 9.9634 -0.6933 1.4498 0.089 40 -1.3326 10.8508 -2.2631 -1.6345 0.056 50 -1.3091 9.9634 -0.6933 1.4498 0.089 348.15 0.1 1.2415 14.0111 0.3138 -2.2777 0.107 10 0.4234 12.4298 -2.5851 -5.0262 0.206 15 -0.1129 14.4181 -1.2147 -8.6178 0.150 25 0.0619 13.4640 -1.1171 -7.8116 0.162 30 -0.0768 12.6533 -1.3236 -6.6557 0.191 25 0.0619 13.4640 -1.1171 -7.8116 0.162 30 -0.0768 12.6533 -1.3236 -6.6557 0.191 40 0.2860 11.4748 -1.6439 -5.2146 0.185 45 0.1591 12.2808 -1.1535 -7.3463 0.198							
35							
40 6.9264 8.6979 -9.5849 0.3360 0.166 45 7.0436 7.9839 -10.6238 -0.3627 0.304 50 6.7838 8.6655 -8.7059 0.1975 0.244 10 6.6093 11.6780 -10.0255 -6.1114 0.255 15 6.7239 13.1302 -11.9512 -10.1965 0.301 20 6.8851 13.2420 -10.6309 -8.6708 0.252 25 6.8048 13.8892 -10.6107 -9.9818 0.256 30 6.3832 11.9259 -9.8003 -7.0925 0.228 35 6.7604 12.2482 -10.3661 -8.1585 0.216 40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 10 -1.4282 12.0225 -0.9408 -0.3229 0.045 15 -1.7306 11.7005 -0.0662 -0.1591 0.037 20 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.3301 9.9634 -0.6933 1.4498 0.089 348.15 0.1 1.2415 14.0111 0.3138 -2.2777 0.107 10 0.4234 12.4298 -2.5851 -5.0262 0.206 15 -0.1129 14.4181 -1.2147 -8.6178 0.059 35 -0.1964 11.5845 -2.0336 -6.6557 0.191 25 0.0619 13.4640 -1.1171 -7.8116 0.162 30 -0.0590 11.1894 -3.3788 -5.9603 0.180 35 -0.1964 11.5541 -2.77780 -7.2810 0.779 40 0.2860 11.4748 -1.6439 -5.2146 0.185 40 0.2860 11.4748 -1.6439 -5.2146 0.185 40 0.2860 11.4748 -1.6439 -5.2146 0.185 40 0.2860 11.4748 -1.6439 -5.2146 0.185							
45							
10							
10 6.6093 11.6780 -10.0255 -6.1114 0.255 15 6.7239 13.1302 -11.9512 -10.1965 0.301 20 6.8951 13.2420 -10.6309 -8.6708 0.252 25 6.8048 13.8992 -10.6107 -9.9818 0.256 30 6.3832 11.9259 -9.8003 -7.0925 0.228 35 6.7604 12.2482 -10.3661 -8.1585 0.216 40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 10 -1.4282 12.0225 -0.9408 -0.3229 0.045 15 -1.7306 11.7005 -0.0662 -0.1591 0.037 20 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.4807 10.1756 -0.2812 1.6545 0.055 35 -1.2854 10.7989 -0.2610 0.4234 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 348.15 0.1 1.2415 14.0111 0.3138 -2.2777 0.107 10 0.4234 12.4298 -2.5851 -5.0262 0.206 15 -0.1129 14.4181 -1.2147 -8.6178 0.059 340 0.2860 11.4748 -1.6439 -5.2146 0.185 40 0.2860 11.4748 -1.6439 -5.2146 0.185 40 0.2860 11.4748 -1.6439 -5.2146 0.185 45 0.1591 12.2808 -1.1535 -7.3463 0.198		50	6.7838	8.6655	-8.7059	0.1975	0.244
15 6.7239 13.1302 -11.9512 -10.1965 0.301 20 6.8951 13.2420 -10.6309 -8.6708 0.252 25 6.8048 13.8992 -10.6107 -9.9818 0.256 30 6.3832 11.9259 -9.8003 -7.0925 0.228 35 6.7604 12.2482 -10.3661 -8.1585 0.216 40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 10 -1.4282 12.0225 -0.9408 -0.3229 0.045 15 -1.7306 11.7005 -0.0662 -0.1591 0.037 20 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.4807 10.1756 -0.2812 1.6545 0.055 35 -1.2854 10.7989 -0.2610 0.4234 0.095 40 -1.3326 10.8508 -2.2631 -1.6345 0.076 45 -1.1711 10.8766 -0.7417 0.2854 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 348.15 0.1 1.2415 14.0111 0.3138 -2.2777 0.107 10 0.4234 12.4298 -2.5851 -5.0262 0.206 15 -0.1129 14.4181 -1.2147 -8.6178 0.150 20 0.0768 12.6533 -1.3236 -6.6557 0.191 25 0.0619 13.4640 -1.1171 -7.8116 0.162 30 -0.0590 11.1894 -3.3788 -5.9603 0.180 35 -0.1964 11.5541 -2.7780 -7.2810 0.179 40 0.2860 11.4748 -1.6439 -5.2146 0.185 45 0.1591 12.2808 -1.1535 -7.3463 0.198	348.15	0.1	8.9758	12.7893	-6.7413	0.9755	0.148
20 6.8951 13.2420 -10.6309 -8.6708 0.252 25 6.8048 13.8992 -10.6107 -9.9818 0.256 30 6.3832 11.9259 -9.8003 -7.0925 0.228 35 6.7604 12.2482 -10.3661 -8.1585 0.216 40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 10 -1.4282 12.0225 -0.9408 -0.3229 0.045 15 -1.7306 11.7005 -0.0662 -0.1591 0.037 20 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.4807 10.1756 -0.2812 1.6545 0.055 35 -1.2854 10.7989 -0.2610 0.4234 0.095 40 -1.3326 10.8508 -2.2631 -1.6345 0.076 45 -1.1711 10.8766 -0.7417 0.2854 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 348.15 0.1 1.2415 14.0111 0.3138 -2.2777 0.107 10 0.4234 12.4298 -2.5851 -5.0262 0.206 15 -0.1129 14.4181 -1.2147 -8.6178 0.150 20 0.0768 12.6533 -1.3236 -6.6557 0.191 25 0.0619 13.4640 -1.1171 -7.8116 0.162 30 -0.0590 11.1894 -3.3788 -5.9603 0.180 35 -0.1964 11.5541 -2.7780 -7.2810 0.179 40 0.2860 11.4748 -1.6439 -5.2146 0.185 45 0.1591 12.2808 -1.1535 -7.3463 0.198		10	6.6093	11.6780	-10.0255	-6.1114	0.255
25							
30 6.3832 11.9259 -9.8003 -7.0925 0.228 35 6.7604 12.2482 -10.3661 -8.1585 0.216 40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 10 -1.4282 12.0225 -0.9408 -0.3229 0.045 15 -1.7306 11.7005 -0.0662 -0.1591 0.037 20 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.4807 10.1756 -0.2812 1.6545 0.055 35 -1.2854 10.7989 -0.2610 0.4234 0.095 40 -1.3326 10.8508 -2.2631 -1.6345 0.076 45 -1.1711 10.8766 -0.7417 0.2854 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 348.15 0.1 1.2415 14.0111 0.3138 -2.2777 0.107 10 0.4234 12.4298 -2.5851 -5.0262 0.206 15 -0.1129 14.4181 -1.2147 -8.6178 0.150 20 0.0768 12.6533 -1.3236 -6.6557 0.191 25 0.0619 13.4640 -1.1171 -7.8116 0.162 30 -0.0590 11.1894 -3.3788 -5.9603 0.180 35 -0.1964 11.5541 -2.7780 -7.2810 0.179 40 0.2860 11.4748 -1.6439 -5.2146 0.185 45 0.1591 12.2808 -1.1535 -7.3463 0.198							
35 6.7604 12.2482 -10.3661 -8.1585 0.216 40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 10 -1.4282 12.0225 -0.9408 -0.3229 0.045 15 -1.7306 11.7005 -0.0662 -0.1591 0.037 20 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.3326 10.8508 -2.2631 -1.6345 0.076 45 -1.1711 10.8766 -0.2812 1.6545 0.055 35 -1.2854 10.7989 -0.2610 0.4234 0.095 40 -1.3326 10.8508 -2.2631 -1.6345 0.076 45 -1.1711 10.8766 -0.7417 0.2854 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 348.15 0.1 1.2415 14.0111 0.3138 -2.2777 0.107 10 0.4234 12.4298 -2.5851 -5.0262 0.206 15 -0.1129 14.4181 -1.2147 -8.6178 0.150 20 0.0768 12.6533 -1.3236 -6.6557 0.191 25 0.0619 13.4640 -1.1171 -7.8116 0.162 30 -0.0590 11.1894 -3.3788 -5.9603 0.180 35 -0.1964 11.5541 -2.7780 -7.2810 0.179 40 0.2860 11.4748 -1.6439 -5.2146 0.185 45 0.1591 12.2808 -1.1535 -7.3463 0.198							
40 7.2282 13.8949 -11.0901 -11.0277 0.218 45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 10 -1.4282 12.0225 -0.9408 -0.3229 0.045 15 -1.7306 11.7005 -0.0662 -0.1591 0.037 20 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.4807 10.1756 -0.2812 1.6545 0.055 35 -1.2854 10.7989 -0.2610 0.4234 0.095 40 -1.3326 10.8508 -2.2631 -1.6345 0.076 45 -1.1711 10.8766 -0.7417 0.2854 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 348.15 0.1 1.2415 14.0111 0.3138 -2.2777 0.107 10 0.4234 12.4298 -2.5851 -5.0262 0.206 15 -0.1129 14.4181 -1.2147 -8.6178 0.150 20 0.0768 12.6533 -1.3236 -6.6557 0.191 25 0.0619 13.4640 -1.1171 -7.8116 0.162 30 -0.0590 11.1894 -3.3788 -5.9603 0.180 35 -0.1964 11.5541 -2.7780 -7.2810 0.179 40 0.2860 11.4748 -1.6439 -5.2146 0.185 45 0.1591 12.2808 -1.1535 -7.3463 0.198							
45 7.1005 12.7861 -10.9410 -9.7649 0.195 50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 10 -1.4282 12.0225 -0.9408 -0.3229 0.045 15 -1.7306 11.7005 -0.0662 -0.1591 0.037 20 -1.4261 11.5825 -2.0156 -2.5644 0.068 25 -1.2964 11.0737 -0.7310 0.2722 0.045 30 -1.4807 10.1756 -0.2812 1.6545 0.055 35 -1.2854 10.7989 -0.2610 0.4234 0.095 40 -1.3326 10.8508 -2.2631 -1.6345 0.076 45 -1.1711 10.8766 -0.7417 0.2854 0.095 50 -1.3091 9.9634 -0.6933 1.4498 0.089 348.15 0.1 1.2415 14.0111 0.3138 -2.2777 0.107 10 0.4234 12.4298 -2.5851 -5.0262 0.206 15 -0.1129 14.4181 -1.2147 -8.6178 0.150 20 0.0768 12.6533 -1.3236 -6.6557 0.191 25 0.0619 13.4640 -1.1171 -7.8116 0.162 30 -0.0590 11.1894 -3.3788 -5.9603 0.180 35 -0.1964 11.5541 -2.7780 -7.2810 0.179 40 0.2860 11.4748 -1.6439 -5.2146 0.185 45 0.1591 12.2808 -1.1535 -7.3463 0.198							
50 7.0326 12.4496 -10.7300 -9.4239 0.181 PPG-4000 (1) + Acetophenone (2) 298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996							
PPG-4000 (1) + Acetophenone (2) 298.15							
298.15 0.1 -4.8431 14.3625 0.8183 -2.6673 0.055 10 -4.0205 13.5252 -1.2510 -5.1123 0.146 15 -4.2060 14.3477 -0.8586 -6.0091 0.179 20 -4.4960 13.9001 -0.5800 -5.6367 0.179 25 -3.8350 13.9182 -1.8964 -5.5989 0.159 30 -3.9371 13.6359 -2.7010 -7.7662 0.193 35 -4.0122 14.0934 -2.7920 -8.4421 0.203 40 -4.2843 13.5583 -1.9474 -7.8958 0.189 45 -4.3033 13.4933 -2.1528 -7.5296 0.199 50 -4.3913 13.8325 -1.8748 -8.4324 0.190 318.15 0.1 -1.5035 13.9576 -0.8800 -3.0996 0.094 10 -1.4282 12.0225 -0.9408 -0.3229 0.045 15 -1.7306 <td></td> <td>00</td> <td></td> <td></td> <td></td> <td></td> <td>0.101</td>		00					0.101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200 15	0.1				ne (Z)	0.055
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298.13						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		45	-4.3033	13.4933	-2.1528	-7.5296	0.199
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		50	-4.3913		-1.8748	-8.4324	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	318.15						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	348.15						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				12.6533			0.191
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.0619	13.4640	-1.1171	-7.8116	0.162
40 0.2860 11.4748 -1.6439 -5.2146 0.185 45 0.1591 12.2808 -1.1535 -7.3463 0.198							
$45 \qquad 0.1591 \ 12.2808 \ -1.1535 \ -7.3463 0.198$							
50 -0.086Z 10.Z99Z 0.55ZZ -1.Z79Z 0.22Z							
		50	-0.0862	10.2992	0.5522	-1.2792	0.222

 a AAD/cm³ mol $^{-1}=1/n\Sigma_{k=1}^n|V_{k\mathrm{calc}}^E-V_{k\mathrm{expt}}^E|,$ where n is the number of data points and V^E is the molar excess volume.

mated to be about ± 0.05 cm³ mol⁻¹. The variations with composition of the excess volumes at 0.1 MPa are s-shaped, as shown in Figures 5 and 6 for PPG + 1-octanol and PPG + acetophenone, respectively. Negative excess volumes are exhibited in the solvent-rich region, whereas $V^{\rm E}$ changes to be positive as the mole

Table 7. Results of Specific Volume Correlation with the Equations of State for "Pure" Compounds

	FOV EOS					Schotte EOS			
compound	P*/MPa	T*/K	$V^*/{ m cm}^3{ m g}^{-1}$	AAD ^a /cm ³ g ⁻¹	P*/MPa	T*/K	$V^*/{ m cm}^3{ m g}^{-1}$	AAD ^a /cm ³ g ⁻¹	
PPG-4000	483.7	6227	0.8401	0.00043	498.9	5543	0.8297	0.00032	
1-octanol	494.9	5627	0.9947	0.00058	511.1	4945	0.9794	0.00053	
acetophenone	627.4	5838	0.8076	0.00027	649.2	5138	0.7954	0.00015	

^a AAD/cm³ g⁻¹ = $1/n\sum_{k=1}^{n} |V_{k,\text{calc}} - V_{k,\text{expt}}|$, where *n* is the number of data points and *V* is the specific volume.

fraction of PPG is increased. The excess volumes increase with increasing temperature over the whole composition range. The volume contraction (negative excess volume) is likely a result of the formation of hydrogen bonds between dissimilar components. The effects of hydrogen bonding become smaller with increasing temperature, which is in accordance with the experimental results shown in Figures 5 and 6. The excess volumes are correlated with the Redlich—Kister equation

$$V^{E} = x_{1}x_{2}\sum_{k=0}^{3} A_{k}(x_{1} - x_{2})^{k}$$
 (8)

Table 6 gives the correlated results. The dashed lines in Figures 5 and 6 are the calculated results from the Redlich-Kister equation.

P-V-T Data Correlation with Equations of State

P-V-T data for polymers are needed for the development of correlation methods. The experimental specific volumes were correlated with two polymer equations of state (EOSs): the Flory–Orwoll–Vrij (FOV)²⁵ and the Schotte. ²⁶ These EOS were expressed as follows

FOV EOS

$$\frac{\bar{P}\bar{V}}{\bar{T}} = \frac{\bar{V}^{1/3}}{\bar{V}^{1/3} - 1} - \frac{1}{\bar{T}\bar{V}}$$
 (9)

Schotte EOS

$$\frac{\bar{P}\bar{V}}{\bar{T}} = \frac{RT^*}{P^*MV^*} \left(1 - \frac{1}{\bar{V}^{1/3}}\right) + \frac{1}{\bar{V}^{1/3} - 1} - \frac{1}{\bar{T}\bar{V}}$$
 (10)

where M is the molecular weight, $\bar{P} = P/P^*$, $\bar{V} = V/V^*$, and $\bar{T} = T/T^*$. The model parameters P^* , V^* , and T^* are characteristic pressure, specific volume, and temperature, respectively, which were determined by fitting the EOS to experimental P-V-T data. Table 7 lists the calculated results for 1-octanol, acetophenone, and PPG. The tabulated characteristic parameters were further employed to calculate the specific volumes of the polymer solutions via the following mixing rules 26

$$V_{\rm m}^* = \left[M_{\rm m} \left(\frac{\Psi_1}{M_1 V_1^*} + \frac{\Psi_2}{M_2 V_2^*} \right) \right]^{-1} \tag{11}$$

$$T_{\rm m}^* = \frac{P_{\rm m}^*}{\frac{\Psi_1 P_1^*}{T_1^*} + \frac{\Psi_2 P_2^*}{T_2^*}} \tag{12}$$

and

$$P_{\rm m}^* = \Psi_1^2 P_1^* + \Psi_2^2 P_2^* + 2\Psi_1 \Psi_2 P_{12}^* \tag{13}$$

Table 8. Results of Specific Volume Correlation with the Equations of State for Polymer Solutions

	FOV	EOS	Schotte EOS		
mixture (1) + (2)	Δ_{12}	AAD/%a	Δ_{12}	AAD/%a	
PPG-4000 + 1-octanol	0.0002	0.061	-0.0004	0.056	
PPG-4000 + acetophenone	-0.0430	0.059	-0.0439	0.050	

 a AAD/% = $100/n\sum_{k=1}^n \mid V_{k,\mathrm{calc}} - V_{k,\mathrm{expt}} \mid V_{k,\mathrm{expt}},$ where n is the number of data points and V is the specific volume.

with

$$\Psi_i = \frac{w_i V_i^*}{w_1 V_1^* + w_2 V_2^*} \tag{14}$$

and

$$P_{12}^* = (1 - \Delta_{12})(P_1^* P_2^*)^{0.5} \tag{15}$$

where Ψ_{i} , M_{i} , and w_{i} represent the segment volume fraction, the number-average molecular weight, and the weight fraction, respectively, of component i. Δ_{12} in eq 15 is a binary interaction constant that was determined from the P-V-T data for each binary system. The calculated results are reported in Table 8. Both the FOV and the Schotte EOS represent quantitatively the P-V-T behavior of PPG + 1-octanol and PPG + acetophenone over the entire experimental conditions.

Conclusions

 $P\!-\!V\!-\!T$ properties have been measured for PPG-4000 + 1-octanol and PPG-4000 + acetophnone at temperatures from 298.15 to 348.15 K and pressures up to 50 MPa. The Tait equation accurately represented the effect of pressure on the liquid density for the two investigated systems. Moreover, all of the $P\!-\!V\!-\!T$ data were also well correlated by a generalized equation with two characteristic parameters. The excess volumes were found to vary from negative to positive with increasing mole fraction of PPG. Both the FOV and the Schotte EOS satisfactorily correlated the $P\!-\!V\!-\!T$ data for these two polymeric systems.

Acknowledgment. The financial support of the National Science Council, ROC, through Grant NSC89-2214-E011-045 is gratefully acknowledged.

References and Notes

- (1) Dee, G. T.; Ougizawa, T.; Walsh, D. J. *Polymer* **1992**, *33*, 3462–3469.
- (2) Muller, E. A.; Rasmussen, P. J. Chem. Eng. Data 1991, 36, 214–217.
- (3) Sandell, L. S.; Goring, D. A. I. J. Polym. Sci.: Part A-2 1971, 9, 115–126.
- (4) Zoller, P.; Walsh, D. J. Standard Pressure—Volume—Temperature Data for Polymers; Technomic Publishing Co.: Lancaster, PA, 1995.
- (5) Compostizo, A.; Cancho, S. M.; Crespo, A.; Rubio, R. G. Macromolecules 1994, 27, 3478–3482.

- (6) Compostizo, A.; Cancho, S. M.; Rubio, R. G.; Colin, A. C. J. Phys. Chem. 1995, 99, 10261-10266.
- Colin, A. C.; Cancho, S. M.; Rubio, R. G.; Compostizo, A. Macromolecules 1997, 30, 3389-3394.
- (8) Colin, A. C.; Rubio, R. G.; Compostizo, A. Polymer 2000, 41, 7407-7414.
- (9) Panayiotou, C.; Sanchez, I. C. Macromolecules 1991, 24, 6231-6237
- (10) Lee, M. J.; Lo, C. K.; Lin, H. M. J. Chem. Eng. Data 1998, 43, 1076-1081.
- (11) Chang, J. S.; Lee, M. J.; Lin, H. M. J. Chem. Eng. Jpn. 1999, *32*, 611–618.
- (12) Lee, M. J.; Lo, C. K.; Lin, H. M. J. Chem. Eng. Data 1999, 44, 1379-1385.
- (13) Lee, M. J.; Tuan, Y. C.; Lin, H. M. J. Chem. Eng. Data 2000,
- 45, 1100-1104. (14) Haar, L.; Gallagher, J. S.; Kell, G. S. NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI *Units*; Hemisphere Publishing Corp.: New York, 1984.
- (15) Vargaftik, N. B. Tables on the Thermodynamical Properties of Liquids and Gases, 2nd ed.; Hemisphere Publishing Corp.: Washington, D.C., 1975.
- (16) Ashcroft, S. J.; Booker, D. R.; Turner, J. C. R. J. Chem. Soc., Faraday Trans. 1990, 86, 145-149.

- (17) Rauf, M. A.; Stewart, G. H. J. Chem. Eng. Data 1983, 28, 324 - 328.
- (18) Sastry, N. V.; Valand, M. K. J. Chem. Eng. Data 1998, 43, 152 - 157.
- (19) Garg, S. K.; Banipal, T. S.; Ahluwalia, J. C. J. Chem. Eng. Data 1993, 38, 227230.
- (20) Wagner, D.; Heintz, A. J. Chem. Eng. Data 1986, 31, 483-487.
- (21) TRC Thermodynamic Tables, Hydrocarbons, Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1993.
- (22) Diaz Pena, M.; Tardajos, G. J. J. Chem. Thermodyn. 1979, 11, 441-445.
- (23) Aminabhavi, V. A.; Aminabhavi, T. M.; Balundgi, R. H. Ind. Eng. Chem. Res. 1990, 29, 2106-2111.
- (24) Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A. J. Chem. Eng. Data 1996, 41, 1255-1268.
- (25) Flory, P. J.; Orwoll, R. A.; Vrij, A. J. Am. Chem. Soc. 1964, 86, 3507-3514.
- Schotte, W. Ind. Eng. Chem. Process Des. Dev. 1982, 21, 289 - 296.

MA010204F